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An invariant formulation of the criterion for the stability of a material, which enables one to investigate the local stability under 
arbitrary stress conditions, is obtained on the basis of Drucker’s postulate [ 11. It is shown that the criterion obtained has an explicit 
physical meaning at large plastic deformations. A relation is established between the stability parameter and other fundamental 
parameters of the stressed state. 0 2001 Elsevier Science Ltd. All rights reserved. 

Drucker’s postulate has been used to study the plastic stability of various structural elements [2, 31. It 
has been shown [4], for the example of a thin-walled, zero-moment cylindrical shell under combined 
loading, that it is necessary to distinguish between the conditions of loss of global and local stability, 
that is, the conditions for the stability of the whole body and of the material respectively. In the case 
of large plastic deformations and, in particular, in technological processes, it is important to investigate 
the local stability at the danger points. In this connection, a development of the results which have 
previously been obtained [4] is given below with the aim of devising a criterion for local stability in the 
general case of a stressed state. 

1. THE STABILITY POSTULATE 

According to Drucker’s stability postulate, the deformation of a body with time-independent properties 
under isothermal conditions is stable in the small if the work done in the case of infinitesimal increments 
in the generalized forces dQi for corresponding infinitesimal increments in the generalized 
displacements &Ii is positive [l, 51, that is 

(1.1) 
Drucker’s postulate can serve as a basis for developing of a criterion for the stability of any material, 

which may or may not be in a plastic state. However, the treatment below is restricted to plastic media 
since, in this case, there are experimental data [6] which confirm the conclusions drawn on the basis 
of Drucker’s postulate. 

The above-mentioned postulate enables the stability of the whole body (global stability) to be analysed 
if, by Qi in condition (1.1) one understands the external generalized forces. In the case when it is 
necessary to analyse the local stability of an element of a body, the internal generalized forces have to 
be used in criterion (1.1). 

Note the restricted possibility of using postulate (1.1) when analysing global stability. In particular, 
it is impossible on the basis of this postulate to predict the moment when loss of shape stability 
accompanying the compression of thin-walled constructional elements, occurs. For this reason, the use 
of postulate (1.1) is most justified when investigating the stability of a material in a stressed state of a 
distinct type when significant geometrical changes occur during plastic changes in shape. 

The need to require large deformations is attributable to the fact that, in (l.l), one is dealing with 
generalized forces, that are different from the stresses themselves which, in this investigation, are 
Eulerian. The difference is due to the fact that, in addition to the stresses, the dimensions of the 
infinitesimal element, which has been picked out of the deforming body at a certain instant of the loading, 
also occur in Qi. 
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2. THE STABILITY CRITERION IN THE PRINCIPAL AXES 
OF THE STRESSED STATE 

At a certain instant during a change in shape, we choose an infinitesimal element from the deforming 
body. Suppose that 1,2,3 are the axes of a Cartesian system of coordinates associated with the element 
and that Ui(i = 1,2, 3) are the dimensions of the element along the corresponding axes (Fig. 1). 

We introduce the generalized forces acting on the faces of the selected element and the increments 
of the generalized displacements 

Q, = ol+a3r Q2 = ~2ala3, 

Q3 = ~3~1~2; dqi = a;dEi 

Here, oi are the principal Eulerian stresses and d&i = dui/ui are quantities which are proportional to 
the rates of deformation at a given instant of loading. 

Hence, in accordance with postulate (1.1) we have 

(do, +o,du2/a2+o,du3/u3)d~,+(do2+a2du,Ia,+o2da3/a3)d&Z+ 

+(do, + a,du, /a, + a,da, I u2)d&, > 0 

According to the incompressibility condition 

Cdu,/ui =0 

We therefore obtain the stability criterion along the principal axes of the stressed state in the form 

C (drJi - OidEi)dE; > 0 (2.1) 

Note that this result has been obtained previously in [7]. However, the local stability of a material 
in the case of different stressed states has not been investigated using this criterion. Also, the relation 
between the stability parameter of the material, which is introduced below, and the other fundamental 
parameters of the stressed state has not been previously established. 

3. THE STABILITY CRITERION ALONG 
ARBITRARY CARTESIAN AXES 

The subsequent transformation of stability criterion (2.1) is associated with the use of the constitutive 
equations of a specific continuous medium. 

For a basis, we take the Saint-Venant-Levy-Mises constitutive equations [S] 

&; = 2s; 
c 

(3.1) 

I 
Fig. 1 
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where 2~~ and o, are equivalent increments in the deformations and the stress, respectively, and Sj are 
the principal components of the stress deviator. 

Taking into account the incompressibility condition of the material Cd&i = 0, we transform condition 
(2.1), using Eqs (3.1), to the form 

(3.2) 

where o0 = Zr(o$3 is the mean normal stress and Zr(cr& is the first invariant of the stress tensor. 
By definition 

6, = [3Z*(s;j)]% = 
[ I ;zs: 

x 

where Z2(SV) is the second invariant of the stress deviator. It is therefore obvious that 

CS;ds, = ~o,do, 

Moreover, the equality 

cs,’ = 3s,s*s, =31&j) 

follows from the identity (Z Sj)3 = 0. 
Stability criterion (3.2) is therefore transformed to the form 

or 

1 9 

t - 4[3Z2(&# 
31,(s~)+5l,(~~)12(sll) >O 1 

where 

and z is a subtangent to the graph of Q]~E,). 
At the instant when condition (3.3) is violated, we therefore have the equality l/z = l/z, and 

‘_ 47 
[ 

3 Z3<stj) 2 
-+-Z&j) 

L- - 4[f2(S,)]X I,$) 3 1 

(3.3) 

(3.4) 

where z. is the subtangent to the deformation diagram at the instant of the onset of instability 
(Fig. 2). 

Consequently, the stability criterion of the material for an arbitrary stressed state has the form 

*J-L,0 
7. Z* 

(3.5) 

where l/z, is the stability parameter of the material, which is defined for any stressed state by the invariant 
representation (3.4). 

We will now consider a number of special cases of stressed states in order to illustrate the application 
of stability criterion (3.5). 
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Fig. 2 

4. THE SIMPLEST SPECIAL CASES OF A STRESSED STATE 

Uniuxiul extension. In the case of uniaxial extension, formula (3.4) leads to the equality l/z* = 1, which 
has been confirmed [5,8] in experiments on the uniaxial extension of a rod by an axial force up to the 
formation of a neck. 

Uniaxial compression. In the case of uniaxial compression, in accordance with formula (3.4), we have 
l/z. = - 1, and since, under compression, l/z > 0, according to criterion (3.5), this means that the process 
of uniaxial plastic compression is always stable. We have in mind the stability of a material in a stressed 
state which, in the case under consideration, can be realized within a short sample which is compressed 
without friction by an axial force. It is well known that, in this case, plastic materials can be deformed 
without fracture at large deformations. 

Simple shear. In the case of simple shear, we have according to formula (3.4), l/z. = 0, that is, 
Z, -+ 00. This, however, does not mean that the material is always stable in the above-mentioned stressed 
state. 

In the case of large plastic deformations, the deformation diagram o, - ]a&, depends to a significant 
extent [6] on the properties of the material and the type ofstressed state. For example, in the case of 
extension, the graph of the stress against the plastic deformation usually increases up to the fracture 
of the sample, while, in the case of simple shear, there is usually a maximum in the deformation diagram. 
In the case of simple shear, the material therefore becomes unstable as l/t + 0 asymptotically since, 
at this point, A = 0. 

Fig. 3 
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5. A SIMPLIFIED PLANE STRESSED STATE 

In the case of a simplified plane stressed state (Fig. 3) we have, according to formula (3.4) 

159 

I -_=f 4+ 15a* 

z+ 4(1+3& 
(5.1) 

where a = z/o is the loading parameter, the upper sign corresponds to extension with shear o > 0 and 
the lower sign corresponds to compression with shear o < 0. 

In the special case when a = 0, we have l/z, = 1, which corresponds to uniaxial extension and, when 
a + m, we have l/z. + 0, as in the case of simple shear. 

Relation (5.1) has been constructed for the values o > 0 in Fig. 4. It has a single extremum at the 
point (0, 1) and shows that there is a monotone decrease in the parameter l/z. as the parameter a 
increases. 

We call the graph of l/z, against the loading parameter the stability diagram of the stressed state of 
the material. Using this graph, it is possible to interpret stability criterion (3.5) graphically. For example, 
in the case of a simplified plane stressed state, the values of l/z, determined in an actual problem at a 
certain instant of loading at a given point of a deforming body by solving the corresponding boundary- 
value problem, which fall above the diagram l/z.(o) in Fig. 4, reflect stable stressed states of the material. 
Points which fall below this diagram correspond to unstable stressed states. 

6. THE PLANE STRESSED STATE 

In the general case of a plane stressed state (03 = 0), by formula (3.4) we obtain 

J_ = sign(o, ) 
4-3m-3m2+4m3 02 

2, 4(1-m+m2)YZ 
, m=- 

(JI 
(6.1) 

The stability diagram, constructed for crl > 0 using Eq. (6.1) as the continuous curve in Fig. 5, 
has a single zero at the point m = -1 which corresponds to simple shear, two asymptotes l/z, = &l 
and, also, three extrema at points with coordinates: m = (11 - m)/4 = 0.188, l/z* = 25/6m) = 
1.08; m = 1, l/z, = 0.5; m = (11 + m)/4 = 5.31 and l/z, = 1.08. The point with coordinates m = 
0 and l/z, = 1, corresponding to uniaxial extension and the point (0; - 1) reflecting uniaxial compression, 
are also characteristic. We also note the existence of the identity 

I/z, (I/m) = sign(m) l/z,(m) 

In accordance with the physical meaning, the last equality means that the redesignation of m = CT&~, 
by l/m = q/q should have no effect on the quantity l/z, (when m > 0). 

From the point of view of the stability loss, the maximum values l/z* = 1.08 which are attained under 
conditions, of biaxial extension with the relations between the stresses cr2 = 0.188 o1 and o2 = 5.31 cri 
are dangerous. In the domain of biaxial extension, the state of the material accompanying uniform biaxial 

a 

Fig. 4 
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Fig. 5 

extension (m = 1) turns out to be the most stable, and the value l/z, = 1 is attained, in addition to the 
case of uniaxial extension, in the case of the two further stressed states cr2 = 0.368~~~ and o2 = 2.720,. 

When o1 < 0, the stability diagram of a stressed state is the mirror image, in the horizontal axis, of 
the diagram depicted by the continuous curve in Fig. 5. The part of the diagram when cri < 0 in the 
domain l/z, > 0 is shown by the dashed curve in Fig. 5. 

Note that biaxial compressions, when l/z > 0, are found to be stable stressed states (l/z. < 0). 
The loading parameter cx = z/o was introduced in the case of the simplified plane stressed state 

(Fig. 3). It can be seen that this parameter is related to the parameter m = 02/q by the formulae 

In particular, when a 2 0 (Fig. 4) the interval -1 c m c 0 is the domain of variation of m. 

7. THE PLANE DEFORMED STATE 

In the case of plane deformation cr3 = (o, + 02)/2. Then, by formula (3.4), we have 

I & -=- c7,+cs2 _ 470, I+m 
--- 

Z* 2 lol--a21 2lqII~-ml 
(7-l) 

Fig. 6 
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The stability diagram when oi > 0 has been constructed with the continuous curves in Fig. 6. The 
vertical asymptote corresponds to hydrostatic extension (m = 1) which is an unstable stressed state. 

In the special case when m = 0, the stability parameter of the stressed state is equal to G/2 = 0.866 
and the stressed state is plane (crZ = 0, o3 = oi/2). The dashed line passing through the point with the coor- 
dinates (0,0.866) is the horizontal asymptote of the stability diagram. The quantity l/z, at the above-men- 
tioned point can also be determined using the diagram l/z,(m) for a plane stressed state (Fig. 5, m = 0.5). 

The point with coordinates m = -1 and l/z, = 0 reflects simple shear, and a second horizontal 
asymptote passes through the point (0, -0.866) which corresponds to biaxial compression (02 = 0, 
cs3 = o,/2, (31 < 0). 

In the case when ol < 0, the diagram for the change in the stability parameter is the mirror image 
of the diagram constructed with the continuous curves in Fig. 6. The part of the diagram when oi < 0 
in the domain of positive values of l/z, is shown by the dashed curve. 

When l/z > 0, any triaxial compressions turn out to be stable stressed states of the material 
(l/z, c 0), which does not contradict Bridgman’s experimental data [6] for large plastic deformations 
of hollow thin-walled steel cylinders under an external pressure. 

A plane state of strain can also be analysed using a second loading parameter, that is, p = z,,/oO, 
where r,, is the maximum shear stress. 

Substituting the equalities [8] o1 = o. + rmax, o2 = o. - z,, into the right-hand side of Eq. (7.1), 
we obtain 

1 I5 (Jt+o2 -45 
-=21a, -(T* 1-3 Zt 

The corresponding stability diagram, which consists of two branches of a hyperbola, is shown in 
Fig. 7. When l3 + + 00, the stressed state approximates to simple shear (l/z, --jr 0). The vertical asymptote 
in the domain j3 > 0 represents hydrostatic extension and, in the case when fi < 0, hydrostatic 
compression, which is a stable stressed state. 

Hence, the use of Drucker’s stability postulate enables one to classify different stressed states using 
the stability parameter l/z,. 

8. THE RELATION BETWEEN THE STABILITY PARAMETER OF 
A STRESSED STATE AND THE OTHER PARAMETERS OF 

THE STRESSED STATE 

We transform formula (3.4) to the form 

I=25 
z* 4 (8.1) 

Fig. 7 
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In the theory of the pressure processing of metals, a number of different plasticity indicators, that 
is, parameters characterizing the experimental data on the plastic limit of metals, is introduced. In 
particular, the stiffness [9] Il = 3o& is one of the basic indicators. l 

Moreover, we have the relation [8] 

271,(S,$(20,3)=cos~, 

where va is the angle of the form of the stressed state associated with the Nadai-Lode relation 

x0 = -J5CWo +$n) 

Consequently, by formula (8.1), 

l/z, = (II + cos 3\y,)/2 

Note that, in the special case when 13(Si.) = 0, cos 3~~ = 0 holds, for example, in a plane deformed 
state and, therefore, l/z. = II/2 = G/(2$), where, as previously, p = z,&sO. 

Hence, the relation between the stability parameter of a stressed state l/z,, which has a definite physical 
meaning, and the other fundamental parameters of a stressed state. II and xv has been revealed. 

1. 

2. 

3. 

4. 
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